Subject programme

WSG

- 1. Subject name / subject module: Methodology of Scientific Research
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: The Institute of Informatics and Mechatronics
 - The person responsible for the subject: Gireń Bolesław, dr hab. inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

							Teac	hing act	ivities w	ith the	tutor							
Form																		Total
of classes Mode of study	Lecture	sow	ECTS	Workshop	sow	ECTS	 sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies	14	11	2	14	11	1												2
Part-time studies			2			T												2
Credit rigor	Graded a	assigm	ent	Graded assi	gment	t												

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	14
Participation in workshop classes	14
Independent study of the subject	9
Problem solving	7
Preparing a project	4
Participation in an exam / graded assignment / final grading	2
Total student workload	50
ECTS credits	2
* Student's workload related to practical forms	25
Student's workload in classes requiring direct participation of academic teachers	28

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Sp	ecific learning outcomes for the subject			Methods for testing of (checking, assessing) learning outcomes		
Outcome symbol	Outcome description	Form	Teaching method			
		Knowle	dge			
K_W09	Student has structured and theoretically founded knowledge on methodology of scientific research, covering key issues, especially knowledge on the research process, research methods, methods for drawing the conclusions, specificity of the empirical research and research of the abstract nature. Student has knowledge on the verification of the hypothesis, assessment of errors and uncertainties, validation of the results and research	Lecture	Expository methods	Final test, student learning activites		

Subject programme

	methode as well as prestical explications of			
	methods as well as practical application of			
	these knowledge in mechatronics.			
		Skill	S	
	Student is able to select and to obtain		Inquiry methods	Final test, student learning activites
	information necessary for the research from			
	the literature and databases; Student is in			
	addition able to interpret and critically			
K_U01	analyse data, assess its relevant meaning and			
	to establish proper correlations. Student can			
	develop method for solving the research			
	problem and appropriate plan of the			
	research.			
	Student is able to plan and carry out both			
	empirical and computational research in			
	mechatronics, especially laboratory			
K_U03	experiments and simulations. Student is able	Workshop		
	to select methods and tools adequate to the			
	research aims. Student can interpret the			
	results and draw the conclusions.			
	Student is able to use the knowledge on	1		
	methodology to formulate scientific			
	questions and to design various research			
	processes, to validation of both the data and			
K_U05	the results of the research. Student is able to			
-	use methods and tools for data analysis.			
	Student can formulate the research			
	hypothesis and test them with conclusive			
	statistics methods.			

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
project of the research	grade x	x	0.4*x
problems solved (10 problems)	grades xi	y = average of xi	0.4*y
test	z = score [%]	u=5*(z/100)	0.2*u

10. The learning contents with the form of the class activities on which they are carried out

(Workshop)

Research; solving the research problem; research hypothesis; stages of the research - research process, research techniques and procedures; scientific method; fundamental methods for the research and drawing the conclusions; analysis, synthesis, deduction, induction; logical proving and inferring methods; experiment as a research method; observation as a research method; measurement and research tools; theory of measurement; model analysis and simulations as a research method; mathematical modelling and algorithms for solution; interpretation and verification of the results; validation and making reliable of the results of the research; validation of the method applied; standards; methods and techniques for analysis and transformation of knowledge; heuristic methods; research related to mechatronics; knowledge and science; ideas of epistemology; terminology and disciplines of science; errors and uncertainties in the research; methods for errors analysis and evaluation; statistical assessment and analysis of the results of the research; computation of the statistical measures; conclusive statistics – testing of the hypothesis.

11. Required teaching aids

Lecture - multimedia projector

Exercises - a room adapted for conducting classes in the form of exercises / workshops, multimedia projector

12. Literature:

a. Basic literature:

https://www.academia.edu/33779875/C_R_Kothari_Research_Methodology_Methods_and_Techniques **a.** Supplementary literature:

M.Chang, Principles of Scientific Methods, Chapman and Hall/CRC, 2014

A.M. Novikov, D.A. Novikov, Research Methodology. From Philosophy of Sciences to Research Design, CRC Press 2013

Vinayak Bairagi, Mousami V. Munot, Research Methodology: A Practical and Scientific Approach, Chapman and Hall/CRC Pub. 2019,

The Oxford Handbook of Epistemology (Oxford Handbooks), by Paul K. Moser,

Kumar R. (2005) Research Methodology – A Step-by-Step Guide for Beginners, London. Sage Pub.,

Panneerselvam R. (2004) Research Methodology. New Delpi. PHI Learning Pvt. Ltd.,

Fundamentals of research methodology and data collection (April 2016) Isbn: 978-3-659-86884-9, Pub. Lambert Academic Publishing,

Creswell J. (2002) Research Design. Qualitative, Quantitative and Mixed Method Approaches. London. Sage Publications,

Mayo, D.G., 1996, Error and the Growth of Experimental Knowledge, Chicago: University of Chicago Press,

b. Internet sources:

NIST/SEMATECH e-Handbook of Statistical Methods (2006), http://www.itl.nist.gov/div898/handbook/

S. Slutz, K.L. Hess, Data Analysis for Advanced Science Project, https://www.sciencebuddies.org/science-fair-projects/competitions/data-analysis-foradvanced-science-projects

Common errors made in research in, http://sociology.camden.rutgers.edu/jfm/tutorial/errors.htm

Muller, G. (2008). Systems Engineering Research Validation. http://www.gaudisite.nl/SEresearchValidationSlides.pdf

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education

Form of education	Name and surname
1. Lecture	Gireń Bolesław, dr hab. inż.
2. Workshop classes	Gireń Bolesław, dr hab. inż.